

Deliverable D300.8

Experimentation Environment architecture, de-
velopment and scenarios execution plan

WP 300

Project Acronym & Number: FIspace – 604 123

Project Title:
FIspace: Future Internet Business Collaboration
Networks in Agri-Food, Transport and Logistics

Funding Scheme: Collaborative Project - Large-scale Integrated Project (IP)

Date of latest version of Annex 1: 03.10.2013

Start date of the project: 01.04.2013

Duration: 24

Status: Final

Authors:

IBM: Dany Moshkovich

UDE: Clarissa Cassales Marquezan

NKUA: Sokratis Barmpounakis

Contributors:

Document Identifier: FIspace-D300.8-V005.docx

Date: 30.10.2013

Revision: 005

Project website address: http://www.FIspace.eu

http://www.fispace.eu/

FIspace 30.10.2013

FIspace-D300.8 Page 2 of 44

The FIspace Project

As a use case project in Phase 2 of the FI PPP, FIspace aims at developing and validating novel Future-
Internet-enabled solutions to address the pressing challenges arising in collaborative business networks,
focussing on use cases from the Agri-Food, Transport and Logistics industries. FIspace will focus on ex-
ploiting, incorporating and validating the Generic Enablers provided by the FI PPP FI-Ware project with
the aim of realising an extensible collaboration service for business networks together with a set of inno-
vative test applications that allow for radical improvements in how networked businesses work in the fu-
ture. These solutions will be demonstrated and tested through early trials on experimentation sites across
Europe. The project results will be open to the FI PPP program and the general public, and the pro-active
engagement of larger user communities and external solution providers will foster innovation and indus-
trial uptake planned for Phase 3 of the FI PPP.

The project will lay the foundation for realizing the vision and prepare for large-scale expansion, comply-
ing with the objectives and expected results of the Phase 2 use case projects. To achieve these out-
comes the project will focus on the following four primary work areas, for which the main concepts and
approach are outlined below:

1. Implement the FIspace as an open and extensible Software-as-a-Service solution along
with an initial set of cross-domain applications for future B2B collaboration, utilizing the Ge-
neric Enablers provided by the FI-Ware

2. Establish Experimentation Sites across Europe where pilot applications are tested in early
trials from the Agri-Food and the Transport and Logistics domains

3. Provide a working Experimentation Environment for conducting early and large-scale trials
for Future Internet enabled B2B collaboration in several domains, and

Prepare for industrial uptake and innovation enablement by pro-active engagement of stakeholders
and associations from relevant industry sectors and the IT industry.

Project Consortium

 DLO; Netherlands Kühne + Nagel; Switzerland

 ATB Bremen; Germany University Duisburg Essen; Germany

 IBM; Israel ATOS; Spain

 KocSistem; Turkey The Open Group; United Kingdom

 Aston University; United Kingdom CentMa; Germany

 ENoLL; Belgium iMinds; Belgium

 KTBL; Germany Marintek; Norway

 NKUA; Greece University Politecnica Madrid; Spain

 Wageningen University; Netherlands Arcelik; Turkey

 PlusFresc; Spain EuroPoolSystem; Germany

 FloriCode; Netherlands GS1 Germany; Germany

 Kverneland; Netherlands Mieloo & Alexander; Netherlands

 North Sea Container Line; Norway OPEKEPE; Greece

 LimeTri; Netherlands Innovators; Greece

More Information

Dr. Sjaak Wolfert (coordinator) e-mail: sjaak.wolfert@wur.nl

LEI Wageningen UR phone: +31 317 485 939

P.O. Box 35 mobile: +31 624 135 790

6700 AA Wageningen www.FIspace.eu

http://www.fispace.eu/

FIspace 30.10.2013

FIspace-D300.8 Page 3 of 44

Dissemination Level

PU Public X

PP Restricted to other programme participants (including the Commission Services)

RE Restricted to a group specified by the consortium (including the Commission Services)

CO Confidential, only for members of the consortium (including the Commission Services)

Change History

Version Notes Date

001 Creation of document & initial structure 01.08.2013

002 Ready for internal review 28.10.2013

003 WP300 Internal review 29.10.2013

004 Updated after review by Rod Franklin 30.10.2013

005 Final formatting of the document 30.10.2013

Document Summary

This report describes the experimentation environment architecture, development, and scenario execu-
tion plans. For clarity sake, this document is self-contained—it includes the summary and refinement
parts of the relevant WP4 deliverables (http://FInest-ppp.eu/project-results/deliverables) of the FInest
project. This document is composed of five parts. Section 2 gives an overview of the EE, Section 3 pro-
 ide a de el ent lan Se ti n r ide the enari e e ti n lan and Se ti n 5 describes in
detail the architecture of the EE. We conclude the report with a summary.

Abbreviations

CKPI Composite Key Performance
Indicator

EE Experimentation Environment

FIspace Future Internet Enabled Optimi-
zation of transport and Logistics
Business Networks

GE Generic Enabler

IoT Internet of Things

KPI Key Performance Indicator

MVC Model-View-Controller

TCP Transport Chain Plan

UI User Interface

WP Work Package

FIspace 30.10.2013

FIspace-D300.8 Page 4 of 44

Table of Contents

1 Introduction ... 6

2 Experimentation environment overview .. 7

2.1 Execution association ... 9

3 Experimentation environment development plan ... 11

4 Experimentation environment scenarios execution plan ... 14

4.1 Scenario execution template .. 14

4.2 Advice Request scenario execution plan ... 16

4.3 Advice Request Scenario setup and execution process .. 18

4.3.1 FIspace Cloud Hosting Infrastructure ... 20

4.3.2 Experimental Set-up ... 22

4.3.3 Experiment Execution ... 23

5 Execution Environment architecture .. 26

5.1 Main terms .. 26

5.2 Experimentation environment components .. 27

5.3 Data types definitions ... 27

5.3.1 Experiment (DataType) .. 27

5.3.2 VariableSpecification (DataType) ... 28

5.3.3 Step (DataType) ... 29

5.3.4 Execution (DataType) ... 30

5.3.5 Resource (DataType) ... 30

5.3.6 Link (DataType) .. 31

5.3.7 ExecutionLogEntry (DataType) .. 31

5.3.8 Report (DataType) .. 32

5.4 Interfaces definitions ... 33

5.4.1 Non-component interfaces ... 33

5.4.2 Component interfaces .. 36

6 Summary .. 43

FIspace 30.10.2013

FIspace-D300.8 Page 5 of 44

List of Figures

Figure 1: FIspace experimentation environment architecture. .. 8

Figure 2: Example of setting a new value for a new shipment ... 9

Figure 3: WP 300 FIspace Hosting and Experimentation .. 12

Figure 4: Experimentation process ... 13

Figure 5: Simplified Advice Request Scenario .. 19

List of Tables

Table 1: Description of FIspace Cloud Hosting for Advice Request Scenario.. 20

Table 2: Description of Experimentation Set-up for Advice Request Scenario .. 22

Table 3: Description of Execution for Advice Request Scenario with Simulated data 23

Table 4: Description of Execution for Advice Request Scenario with Real Stream of Data 25

FIspace 30.10.2013

FIspace-D300.8 Page 6 of 44

1 Introduction

The FIspace project aims to address fundamental changes in how collaborative business networks will
work in the future. It is the direct continuation of the work done in the Phase 1 use case projects (FInest
and SmartAgriFood). The FIspace project entails a plan to develop a multi-domain business collaboration
space (FIspace) that employs FI technologies for enabling seamless collaboration in open, cross-
organizational business networks, establishing eight working experimentation sites in Europe, where pilot
applications are tested in early trials for Agri-Food and Transport and Logistics domains in preparation for
industrial uptake by engaging with players and associations from relevant industry sectors and from the IT
industry.

FIspace Work Package 300 (WP300) deals with the identification and design of an Experimentation Envi-
ronment (EE) for testing, demonstrating, and evaluating the envisioned technologies. WP300 aims to
provide a suitable environment for conducting the experiments for the use case scenarios for Agri-Food
and Transport and Logistics. WP300 will use real life data feeds and simulation to test and validate the
FIspace service and its supporting GEs. Simulation is a powerful tool to test, observe, and gain under-
standing of new concepts, processes, and technologies under current and future scenarios. Simulation of
an end-to-end scenario can enable a deeper understanding of the FIspace platform and the evaluation of
future processes on top of this new technology.

The work done by WP4 of FInest project addressing a preliminary EE design has been re-checked and
has been found to be relevant and appropriate for the changes introduced over the first six months of the
FIspace project and therefore has been used as a basis for the current definitions in WP300.

This report describes the Experimentation Environment architecture, development and scenarios execu-
tion plans. For clarity sake, this document is self-contained—it includes the summary and refinement
parts of the relevant WP4 deliverables (http://FInest-ppp.eu/project-results/deliverables) of the FInest
project. This document is composed of five parts. Section 2 gives an overview of the EE, Section 3 pro-
vides a development plan, Section 4 provides the scenario execution plan and Section 0 describes in
detail the architecture of the EE. We conclude the report with a summary.

http://finest-ppp.eu/project-results/deliverables

FIspace 30.10.2013

FIspace-D300.8 Page 7 of 44

2 Experimentation environment overview

The FIspace experimentation environment will operate by activating the FIspace platform and will invoke
it at each test execution utilizing FIspace technologies and databases. It consists of three interconnected
primary components (see Figure 1):

 FIspace test. This is a replica of the FIspace platform used for testing purposes to avoid "playing"
in the production environment. It is anticipated that test executions will be enabled with real-data
as well as with simulated data. The UI will be extended to support both modes.

 FIspace experimentation environment. This includes all components required to run and analyze
test executions, as well as databases for the storage of executions, execution logs, reports,
KPI(s), test data, resources, and roles and access rights.

 FIspace experimentation environment front-end. This is the UI that enables users to use the ex-
perimentation environment to create, update, execute, and report on tests.

The EE architecture follows the Model-View-Controller (MVC) paradigm characterized by:

 Model. This is the knowledge of the system, including the entities, statuses, and states, and the
necessary logic for creating and conducting experiments.

 View. This refers to the presentation and representations of the model. In this case, the displayed
information includes experiment steps and reports.

 Controller. The controller is the link between the user (the view) and the system (the model). It re-
 ei e the er’ in t and date the del tate a rdingly.

 The EE (model). This contains the components required to realize all functionality, including the
storage of experiments, execution states, execution logs, reports, and data to be used during ex-
ecution.

 The Experimentation Front End. This refers to the UI for the users to be able to use the experi-
mentation environment to create, update, execute and report on tests. It includes the following
high-level views (see Figure 1):

o Access Handling: Controls the access to the experimentation environment and EE arti-
facts (experiments, execution logs, reports, etc.)

o Experiment Management: The management of experiments, including finding, creating
and updating experiments

o Execution Management: Creating and managing the execution of experiments

o Resource Management: Provides basic information on available resources and allows
managing the resources in the system

o Reports: Finding, creating, editing, and viewing reports over executions

The system (EE) interacts with the FIspace Test system through a Backend Simulator component. This
includes injecting data into FIspace test and recording events and other data processed by FIspace test
so as to enable the calculation of KPIs.

We foresee that a few components of the envisioned EE may be off-the-shelf components, that is, can be
bought as specific-purpose components to be incorporated into the EE for specific purposes. Specifically,
we believe that the reporting component and the script engine component (for executing user scripts),
can be off-the-shelf and do not require self-development by the FIspace team. Furthermore, we expect
reporting (together with KPIs) capabilities to become a separate application from the experimentation
environment and be part of the services provided by FIspace.

Figure 1 presents the FIspace EE architecture. A detailed description of the different modules and defini-
tion of the data types and interfaces are given in Section 0. Note that the technical architecture depicted
in Figure 1 is defined at the model-level, using TAM (the Technical Architecture Modeling language)

1
, a

UML derivate, following the convention used in the other technical work packages.

1
 http://www.fmc-modeling.org/fmc-and-tam

FIspace 30.10.2013

FIspace-D300.8 Page 8 of 44

Figure 1: FIspace experimentation environment architecture.

FIspace 30.10.2013

FIspace-D300.8 Page 9 of 44

2.1 Execution association

The first step of an execution includes the set-up required. One possible example is illustrated in Figure 2,
using the Application transport module. In the experiment, an ExposedDataProvider is defined for storing
the shipment ID. Another data provider is used to provide the link for creating a new shipment, which
passes through the URI for accessing the ShipmentIdDataProvider.

Figure 2: Example of setting a new value for a new shipment

Extensions for supporting applications

 Dynamic data binding:

o Data Provider Factories: These allow for the dynamic creation of data providers. These
data providers may need to communicate with the application; if so, the factories should
be provided by the application.

o Dynamically Bound Data Providers: These entail the lazy creation of a data provider
through a factory. These data providers should be defined using variable names that are
referenced during execution. These providers should most likely be defined by the exper-
iment author and configured to be saved in the internal data provider system.

 Exposed Data Providers: These applications can access and potentially update data for data pro-
viders that are declared as being exposed to applications. If needed for updating data, then these
should be DynamicallyBoundDataProviders as well (i.e., they should be created by a factory so
that different executions have different instances).

 Links: Links are first-class citizens. They are created to give access to the application and pass
through information needed by the application, such as access details for exposed data providers
for accessing and storing data.

 Explicit registrations for notifications and events: Since the notifications and events are applica-
tion specific; the registration must be explicit as well.

Application- e ifi nent are labeled with “FI a e Te t – A ” in the ar hite t re diagra t
differentiate the fr the FI a e en ir n ent whi h are labeled “FI a e Te t”.

Tester
Execution

Management

App UI (Test
Mode)

App Transport
Module

Data Provider

Click Start Experiment

Tester fails out

shipment details
Click Submit New

Shipment CreateShipmentDetails
(URI for the execution’s

ShipmentId DataProvider)

Open New Window,

giving Link for creating
Shipment

SetValue(0,ShipmentId)

Click Next Step

As part of end of last step, register for Events and Notifications related to ShipmentId

Operating
Environment

Next step processing
continues

FIspace 30.10.2013

FIspace-D300.8 Page 10 of 44

Application Requirements

FIspace applications are required to supply certain capabilities so that they can be supported in the
FIspace Experimentation Environment. These capabilities primarily center on the lifecycle of the applica-
tion state. For example, consider a transport scenario in which a shipment consists of several legs. The
shipment itself would need to be created. Each leg would need to be created. Events may need to be
injected (i.e., simulated) for one of the legs. The shipment ID and leg Id would likely need to be included
in the event. Thus, the execution of the experiment would need to be able to access this data, and indeed
the application should provide that data as part of the shipment and leg creation. To support such scenar-
ios, the application UI needs to provide additional capabilities within the test or experimentation context.
Specifically, the UI should be able to receive the access details for exposed data providers, and the appli-
cation logic should receive or set data as needed. The links to the application UI are provided through
data providers. Additionally, for any application data that is managed by the application (for example, data
that changes dynamically within FIspace as a result of events) and that is necessary during experiment
execution, the application will need to provide a data access system for connecting to the application.

FIspace 30.10.2013

FIspace-D300.8 Page 11 of 44

3 Experimentation environment development plan

WP300 is accountable for the "FIspace Hosting and Experimentation" of the project. WP300 in FIspace is
a straightforward continuation of the work accomplished in FInest WP4 "Experimentation Environment". In
addition, FIspace WP300 also includes the deployment of the platform components and FI-WARE

2
 Ge-

neric Enablers (GEs) in a cloud infrastructure. FIspace WP300 incorporates FInest WP4 results and takes
FInest EE specification as the starting point upon which to build.

As part of the WP300 work in FIspace we will build an internal cloud infrastructure in which the FIspace
components as well as the use cases will be deployed, and the EE will operate. The eight use cases of
the FIspace project will be specified in a way that enables their physical testing or simulation in the exper-
imentation environment of the project. In the latter case, historical real data will be used for simulation,
thus enabling an environment as close as possible to the real environment.

In total, eight use case trials have been specified for FIspace, organized along three themes:

(A) Farming in the Cloud addresses food production issues at the farm level and covers two use case
trials:

 Crop Protection Information Sharing – Using field sensors and satellite data to intelligently man-
age the application of pesticides for maximum crop protection

 Greenhouse Management and Control – Using sensors to monitor key growth factors (UV radia-
tion, moisture and humidity, soil conditions, etc.) and to feedback data to control systems to modi-
fy the growth environment for maximum yield and optimal quality

(B) Intelligent Perishable Goods Logistics addresses monitoring and environmental management is-
sues of perishable goods as they flow through their supply chains so that waste is minimized and shelf life
maximized covering three use-case trials:

 Fish Distribution and (Re-)Planning – Focuses on the planning of logistics and transport activities,
including transport order creation, transport demand (re)planning, and distribution (re)scheduling

 Fresh Fruit and Vegetables Quality Assurance – Looks at the management of deviations (trans-
ports, products) that affect the distribution process for fresh fruit and vegetables (transport plan,
food quality issues), either deviation from the plan or other external events requiring re-planning

 Flowers and Plants Supply Chain Monitoring – The monitoring and communication of transport
and logistics activities focusing on tracking and tracing of shipments, assets and cargo, including
q ality nditi n and i lated helf life f ing n arg and a et q ality tra king (“intelli-
gent arg ”) hi ent tra king (“intelligent hi ent”) and life y le inf r ati n tra king of cargo
characteristics/cargo integration along the chain

(C) Smart Distribution and Consumption is about helping consumers to obtain better information on
the goods they purchase and helping producers to better control the flow of their goods to the consumer,
covering three use-case trials:

 Meat Information Provenance – Ensuring that consumers, regulators, and meat supply chain par-
ticipants all have accurate information concerning where a meat product originated (production
farm) and how it was affected by its distribution (quality assurance)

 Import and Export of Consumer Goods – The intelligent management of inbound materials to a
production site and the smart distribution of finished goods to consumers

 Tailored Information for Consumers – The provisioning of accurate information to individual con-
 er’ need and feedba k f thi inf r ati n t the r d er

Figure 3 depicts the different Tasks to be accomplished by WP300 in FIspace.

2
 http://www.fi-ware.eu/

FIspace 30.10.2013

FIspace-D300.8 Page 12 of 44

Figure 3: WP 300 FIspace Hosting and Experimentation

More specifically, the following FIspace WP300 tasks (Task 340 and Task 350, respectively) will deal with
the experimentation environment follow up of FIspace EE:

Experimentation set-up and execution – This task objective is to provide support for the actual execution
of the use cases scenarios in the experimentation environment.

Experimentation facilities – The objectives of this task are twofold: to provide an EE to test the provided
new services using real data and physical sites, as well as simulation environment for the testing execu-
tion and to provide means to facilitate the analysis and assessment of FIspace new collaborations per-
formance as reflected in the use-case scenarios.

Experimentation set-up and execution task

This task is concerned with the actual execution set-up and support of the use-case trials (test scenarios)
specified in the FIspace project. In essence, this task supports the experimentation process as shown in
Figure 4.

This task is further divided into two subtasks:

 Experiment design and configuration (M1- M15) – This subtask focuses on making the use-
case trials defined throughout FIspace executable, meaning that they can be run either manually
or automatically (using scripts) in the experimentation environment. This subtask corresponds to
the experimentation design and configuration phase in the figure (and denoted as a solid line).

 Experiment execution and analysis (M9 - M24) – This subtask deals with the actual execution
of the different steps of the use cases trials and the analysis of the outcomes. This subtask corre-
sponds to the experiment execution and analysis phase in the figure (and denoted as a dotted
line).

Task 320: Cloud Hosting

Task 330: Core Platform GE Integration &
Deployment

Task 310: cSpace Hosting & Experimentation Coordination

Task 340: Experimentation Set-up & Execution

Task 350: Experimentation Facilities

Task 320: Cloud Hosting

Task 330: Core Platform GE Integration &
Deployment

Task 310: cSpace Hosting & Experimentation Coordination

Task 340: Experimentation Set-up & Execution

Task 350: Experimentation Facilities

FIspace 30.10.2013

FIspace-D300.8 Page 13 of 44

Figure 4: Experimentation process

Experimentation facilities task

This task is concerned with the scaffolding and interfaces that are required to have an environment that is
as-close-as-possible to the actual real-life environment. The starting point of this task is the experimenta-
tion environment specification detailed in Section 2.

This task is further divided into three subtasks:

 EE test (M1-M9) – This subtask is concerned with putting a test bed in place for FIspace in which
the use case trials will be carried out, including simulation capabilities, namely, the test compo-
nents in Figure 1.

 EE core (M6-M21) – This subtask is concerned with the development and support of all compo-
nents required to run and analyze experiments executions, namely, the EE components in Figure
1.

 EE front-end (M6-M21) – This subtask is concerned with the development of the user interface
to enable the use of the EE to create, update, execute, and report of tests, namely, the EE front-
end in Figure 1.

The aim is to have three releases of the EE resulting in three incremental versions of the EE. Further-
more, these releases will be in full synchronization with the milestone releases of the project and with the
work package deliverables as described in the DoW.

In the future, we plan to run our scenarios in environments provided by XiFi. Our emphasis is on physical
sites equipped with IoT (Internet of Things) sensors and realtime data that can be obtained from those
sensors, especially in the domains of transport and logistics and agri-food. Ideally, we would like to have
environments that support point-to-point scenarios (e.g., flight routes or ship itineraries).

test

scenario

business user tester

experiment/test

execution log

tester

Execute
experiment

Create test
scenario

Configure
experiment

Report

actor

task

output

business user

Experimentation

design and

configuration Experiment execution and analysis

test

scenario

business user tester

experiment/test

execution log

tester

Execute
experiment

Create test
scenario

Configure
experiment

Report

actor

task

output

business user

test

scenario

business userbusiness user testertester

experiment/testexperiment/test

execution logexecution log

testertester

Execute
experiment

Create test
scenario

Configure
experiment

Report

actor

task

output

business userbusiness user

Experimentation

design and

configuration Experiment execution and analysis

FIspace 30.10.2013

FIspace-D300.8 Page 14 of 44

4 Experimentation environment scenarios execution plan

This section provides the guidelines for FIspace scenarios execution and demonstrates the process on
the e a le f “Greenh e Manage ent and C ntr l” enari . The g al i t h w ba ed on a con-
crete example, how the hosting environment and the experimental environment of FIspace will work to-
gether with the components of FIspace platform (WP200) and the trials (WP400).

To simplify and standardize our work, we recommend a partial adoption of the IEEE 829 standard for
testing FIspace scenarios as described in 4.1. Section 4.2 illustrates the use of the template on example
 f “Ad i e Req e t” (Trial 22) and Se ti n 4.3 gives the overview of the entire scenario execution pro-
cess using the same trail example.

4.1 Scenario execution template

Testing of software systems is a well-established field. Therefore, we have investigated exiting standards
to adopt them for testing of the FIspace scenarios. The IEEE 829-2008 standard for Software and System
Test Documentation specifies the form of a set of documents for defined stages of software testing. The
following is an overview of the relevant parts of the standard (we will use the short name appearing in
parenthesis after the item in the rest of the discussion):

 Test Plan (LTP): This is a management planning document that shows how the testing will be
done, who will do it, what will be tested, how long it will take, and what the test coverage will be,
such as what quality level is required.

 Test Design Specification (LTD): These specifications detail the test conditions and the ex-
pected results as well as test pass criteria.

 Test Case Specification (LTC): This specifies the test data for use in running the test conditions
identified in the Test Design Specification

 Test Procedure Specification (LTPr): This details how to run each test, including any set-
up preconditions and the steps that need to be followed.

 Test Item Transmittal Report (LTITSR): This reports on when tested software compo-
nents have progressed from one stage of testing to the next.

 Test Log (LTL): The test log records which tests cases were run, who ran them, in what order,
and whether each test passed or failed.

 Test Incident Report (LTIR): This report describes, for any test that failed, the actual versus ex-
pected result, and other information intended to throw light on why a test has failed, and it may
include an assessment of the impact of an incident upon testing.

 Test Summary Report (LTSR): This is a management report providing any important information
uncovered by the tests accomplished, assessments of the quality of the testing effort, the quality
of the software system under test, and statistics derived from Incident Reports. This final docu-
 ent’ r e i t indicate whether the software system under test is fit for purpose, according
to whether or not it has met acceptance criteria defined by project stakeholders.

Based on the standard, we derived a template that we suggest to use for the planning and execution of
FIspace scenarios.

Created: (LTP) (Date) Last Change: (Date)

Test Started: (LTP) (Date) Test Ended: (LTP) (Date)

Partners: (LTP) NKUA, Innovators Work Package: WP 400

Status: Defining requirements/

started/ finished (1st

test) etc...

FIspace 30.10.2013

FIspace-D300.8 Page 15 of 44

KPIs / Pass-Fail Crite-

ria (LTD)
Provide criteria that will determine the final outcome of the test

Final outcome: Passed / Failed

Test Input / Output

Data (LTC)

(Figure 14 in FInest

D2.5 doc)

Input:

…

…

Output:

…

…

FIspace Modules In-

volved
Provide FIspace components involved in the particular scenario

 Preconditions (LTPr) Provide conditions that should be met, before the start date of the experiment
(e.g., Mediator GE must be configured, deployed and running)

Requirements (LTPr) According to the standard, "shall" corresponds to obligatory requirements,

while "should" refers to requirements of secondary importance

The FMIS shall be already instantiated and connected to the FIspace platform

The B2B collaboration module shall have been set-up accordingly to support

the communication between the PinfS Baseline App and the FMIS service

instance …

…

Actions/steps to be

performed (LTPr)

The user opens the corresponding FIspace app…

When the “New notification” icon is active, he clicks on it.

The user gets the input from ...

By the time he clicks on the message…

Expected Results cor-

responding to above

action numbers (LTD)

To be filled before the start date of the experiment

Chronological record

of details of actual

events (LTD)

To be filled during and after the experiment has completed

Provide the chronological record of relevant details about the actual execution

of tests.

Results (LITSR/LTR) Actual outcomes of the experiment.

To be compared with the expected results form LTD above

Anomaly Report Provide for tests that failed the actual result, the reason why the test has failed,

and if possible, the impact of the Anomaly Report upon testing

FIspace 30.10.2013

FIspace-D300.8 Page 16 of 44

4.2 Advice Request scenario execution plan

This section illustrates the use of the template described in the previous section with the Advice Request
scenario from the Greenhouse Management & Control (Trail 422) as an example. The example of the
execution plan that is given in this section is not complete (as the work on this scenario is still in progress)
and is given just for the demonstration purposes.

Test Case Name: Greenhouse Management
& Control Trial

Test Case Type: Use Case Trial

Created: 1/4/2013 Last Change: 16/9/2013

Partners: NKUA, Innovators Work Package: WP400

Specific Use Case: “Ad i e Req e t” enari Status: Business Process created

 Functional requirements
defined

 GSM modeling of the Ad-
vice business entity created

 Identifying required inter-
faces/data models with leg-
acy systems

Description/Purpose: Business Layer

The en r ’ al e f the Greenh e are f rwarded ia the Greenh e
Farm Management System (FMIS) to the Advisory (Expert system) via
FIspace. The farmer is using the Advice Request App to view the advices and
actions to take, provided by the expert system, to maximize the efficiency of
the Greenh e’ r d ti n.

Technology Layer

The Farmer uses the FIspace Advice Request App using a specific GUI to
handle the monitoring of the greenhouse sensors. Apart from the constant
monitoring choice and the advice/actions based on these values, the farmer
has the option to create a manual advice request, by inputting the appropriate
text. The Agrosense Service, which is handling the sensor data, forwards it to
FIspace. In particular, the core module of FIspace, which receives and moni-
tors the sensor values, is the Event Processing Module (EPM). Whenever a
threshold violation is detected, according to pre-specified rules, the EPM for-
wards the event to the Expert System. All generated values (including the nor-
mal ones that do not exceed any threshold) are stored inside the FMIS for
analysis, graphical representation to the farmer, etc. The Expert System based
on the particular events received (generated form the threshold violations from
EPM), translates them to the appropriate alerts, advice and actions to be taken
and sends them back to FIspace, which forwards this information for the farmer
ba k t the FMIS er i e a well a t the FI a e Ad i e Req e t a ’ GUI.

FIspace 30.10.2013

FIspace-D300.8 Page 17 of 44

Prerequisites - Re-
quirements:

 The business process has already been created inside the platform
(BCM) and has been linked to the Advice Request App

 FIspace Advice Request App is already set up and configured to the
specific external systems

 The External System adapter (T250) is configured and supports the in-
coming / outgoing traffic for the Greenhouse FMIS and the Expert Sys-
tem

 The Greenhouse FMIS is configured and the sensor values are being
f rwarded t FI a e’ EPM d le thr gh the fir t adapter

 The e ert y te i nne ted t FI a e’ EPM and i able t re ei e
the generated events as well as forward back the generated advice
through the second adapter

 EPM i nfig red with the e ent r le (en r al e ’ thre h ld) ac-
cording to the GSM deling f the “Ad i e” b ine entity

 Business Collaboration Module is configured for the specific Business
Process

 …

 …

Actions: Test Scenario 1:

1. Manually create a threshold
violation event (either using the
Backend Simulator component of
the FIspace Experimentation Envi-
r n ent r an ally “ i lead” a
particular sensor inside the Green-
house, e.g., temperature to gener-
ate exception)

2. The user logs in FIspace and
opens the Advice Request app
(pre-installed for the particular us-
er)

3. The user clicks on the notifica-
tion

4. The user views the alert related
to the temperature raise, and views
the advice-actions that the expert
system generated

5. The user gives feedback on the

Expected
Results:

Test Scenario 1:

1. The EPM detects the tem-
perature threshold violation
and generates an event, which
is sent to the expert system;
the expert system generates
advice/actions based on the
input form the EPM and then
forwards it back to the Advice
Request App

2. A notification shows up
when the user logs into
FIspace and opens the Advice
Request App

3. The alert as well as the ac-
tions (advice) from the expert
sytem are presented to the
farmer

4. –

5. The expert system receives
 ia FI a e the er’ feed-

FIspace 30.10.2013

FIspace-D300.8 Page 18 of 44

e ert y te ’ ad i e back and updates the advice
algorithm for the particular user

Report Log example for Test Scenario 1: (by timestamp - TS)

TS 1: [Greenhouse FMIS]: sending sensor values…

TS 2: [FIspace EPM]: Greenhouse sensor values received – “All values within
accepted boundaries”

TS 3: [Greenhouse FMIS]: sending sensor values…

TS 4: [FIspace EPM]: Greenhouse sensor values received – “All values within
accepted boundaries”

TS 5: [Greenhouse FMIS]: sending sensor values…

TS 6: [FIspace EPM]: Greenhouse sensor values received – “Temperature
HIGH!”

TS 7: [FIspace EPM]: Sending event to the expert system

TS 8: [FIspace BCM]: Forwarding event to the expert system

TS 9: [E ert Sy te]: E ent re ei ed. Generating ad i e…

TS 10: [E ert Sy te]: Sending ad i e ba k t FI a e…

TS 11: [Expert System]: Advice sent.

TS 12: [FIspace BCM]: Advice received from Expert System

TS 13: [FIspace BCM]: Forwarding advice to Greenhouse FMIS

TS 14: [Greenhouse FMIS]: New advice received

TS 15: [FIspace Advice Request App]: New advice received

…

…

TS t: [FIspace Advice Request App]: Notification consumed by user

…

…

4.3 Advice Request Scenario setup and execution process

In this section, we describe the execution process for Advice Request scenario associated with the Trial
422 Greenhouse Management and Control. We show how the hosting environment and the experimental
environment of FIspace can work together with the components of FIspace platform (WP200) and the
trials (WP400). As illustrated in Figure 5, three roles (farmer, Greenhouse Management, Expert) and
three systems (FIspace Platform, Farm Management System (FIMS), and Expert System) are involved in
the Advice request scenario.

FIspace 30.10.2013

FIspace-D300.8 Page 19 of 44

Figure 5: Simplified Advice Request Scenario

The situation to be experimented in this scenario involves:

 Checking if the reading of experimental conditions of the farm are out of boundaries

 If an out of boundary situation is identified, steps necessary to request new advice about the
spraying parameters must be activated

 Receive the new advice and send it to the farmer system

The main actions performed by each role are:

Farmer:

 Visualize in FIspace Frontend the content of the computed advice

AgroSense (Farm Management System - MIS)

 Send events to FIspace with sensor consolidated information

 Receive computed spraying advice when out-boundary sensor readings was detected

Expert (Advisory) System

 Receive request for creating an spraying advice

 Compute the advice

 Answer request with computed advice

The next sections describe how the functionalities offered in WP300 will support the deployment and exe-
cution of experiments associated with this scenario.

FIspace 30.10.2013

FIspace-D300.8 Page 20 of 44

4.3.1 FIspace Cloud Hosting Infrastructure

The FIspace cloud hosting facility has been defined in D300.2. In this section, we describe how this host-
ing facility supports the deployment of the software components and the roles involved in the Advice Re-
quest scenario. The details of this support are illustrated and described in Table 1.

Table 1: Description of FIspace Cloud Hosting for Advice Request Scenario

Screenshot Description of Situation

A) Software support from FIspace

The execution of the advice request
scenario demands the software
components illustrated in the figure
on the left. There are backend sys-
tems that are not part of FIspace
Platform and there are the compo-
nents that are part of FIspace Plat-
form. In addition, there is also the
tester, which in this case is the
farmer interested in receiving the
new advice.

B) Illustration of the hosting envi-
ronment

The illustration on the left show the
architecture of the cloud hosting
facilities (Details in are available in
D300.2). In the Advice Request sce-
nario there systems and software
components that should be de-
ployed inside the FIspace cloud
hosting facilities and there will be
others deployed and used by us-
ers/tester that are outside the host-
ing environment.

FIspace 30.10.2013

FIspace-D300.8 Page 21 of 44

Screenshot Description of Situation

C) Backend Systems placement

All backend systems required by any
scenario will not be deployed inside
the hosting facilities of WP300.
These are external systems and are
kept outside the KOC Cloud. In the
Advice Request scenario, the Farm
Management Information System
(FMIS) and the Expert System are
examples of system that will not be
deployed inside the cloud hosting,
but they will be accessed remotely.

D) FIspace software components
hosting

All software components developed
in the core FIspace Platform
(WP200) and for supporting the
trials will be hosted inside the KOC
cloud, i.e., inside the FIspace host-
ing facilities.

E) Tester of the scenario

All users or testers of a scenario will
access the FIspace platform through
the Internet. In the Advice Request
scenario, the user (in this case the
farmer) will login inside FIspace
from his/her notebook or
smartphone (both outside the cloud
hosting environment).

FIspace 30.10.2013

FIspace-D300.8 Page 22 of 44

4.3.2 Experimental Set-up

To support the proper execution of the trial experimentation, we created a template based on IEEE 829
standard, as indicated in 4.1. This template contains the set of documents that need to be generated by
the trials in order to help the set-up of the experiments in WP300. In this section, we present a summary
in Table 2 of how these some of these documents are used in each one of the phases defined for the
experimentation set up of the Advice Request scenario.

Table 2: Description of Experimentation Set-up for Advice Request Scenario

Screenshot Description of Situation

F) Definition of Test Scenario

The definition of the scenario to be
tested is a task conducted by each
Trail in WP400. The result of this
work is documented according to
the template detailed in 4.1. The
first set of information from the
template (e.g., description/purpose)
is important to give the overall
scope of the trial. They help to de-
fine which kinds of roles are ex-
pected to be used in the scenario
and the goal of the test in this sce-
nario. The figure on the left summa-
rizes and illustrates the details pre-
sented in 4.2. For the Advice Re-
quest scenario 3 roles are ad-
dressed: famer, FMIS System and
Expert System

G) Experimental Protocol

The precise definition of what needs
to be configured and designed for
the experimentation of the scenario
is described in the Experimentation
Protocol. The experimentation pro-
tocol comprises the following fields
of the template: Prerequisites-
Requirements, Actions, Expected
Results and Report. This infor-
mation is essential for configuring
the scripts that will run step by step
the scenario.

FIspace 30.10.2013

FIspace-D300.8 Page 23 of 44

Screenshot Description of Situation

H) Information needed to run the
experiment

In addition to the definition of the
steps and expected results. It is also
necessary to indicate which kind of
information, formats and values
each scenario requires. For exam-
ple, for the Advice Request Scenario
the definition of the sensor infor-
mation propagated by the FMIS
system is essential. Based on this
information FIspace platform will be
able to detect out boundaries sen-
sor information and then start the
collaborative process between
farmer, FMIS and Expert System to
get a new spraying advice according
to the new conditions of the farm
environment reported in the sensor
information.

4.3.3 Experiment Execution

FIspace Experimental Environment provides basically two ways for running the experiments—simulated
data streams and real-time data streams.

In the first case, the real data associated with the situations to be tested in the trial are collected and
stored in a database previously to the execution of the experimentation. Then, at the moment of conduct-
ing the e eri ent the “Ba kend Si lat r” nent fr the FI a e E eri entati n En ir n ent
framework reads this database and pushes the simulated the data stream into the trial experiment execu-
tion as if the data was coming from external systems. Table 3 illustrates the use of simulated data in the
Advice Request scenario.

Table 3: Description of Execution for Advice Request Scenario with Simulated data

Screenshot Description of Situation

A) Overview of Experimentation
facilities

For each scenario in the trial a tech-
nical sequence of steps will be asso-
ciated with such scenario. The defi-
nition of these technical steps is not
part of WP300 or WP400 but they
are implicitly created once the
software components associated to
the scenario are used together. In
the figure on the left, the sequence
of steps of the Advice Request sce-
nario is illustrated. The orange steps
represent the interaction with the
FMIS system, the white ones are
interaction inside FIspace Platform,
and the violet steps indicate inter-
action with the Expert System. As it
will be described in the item B of

FIspace 30.10.2013

FIspace-D300.8 Page 24 of 44

Screenshot Description of Situation

this table, the actual interaction
with the orange and violet steps will
be simulated.

B) Backend Simulator Compo-
nent pushing information into
FIspace Platform

In the Advice Request scenario, the
FMIS system sends events with sen-
sor information to FIspace Platform.
These sensor values are checked by
the FIspace Platform. If they are out
of expected boundaries the FIspace
start the process to request an ad-
vice to the Expert System.

In the simulated execution of this
scenario experimentation, the
events with sensor information are
stored inside the “backend Simula-
tor” and are pushed into the
FIspace test environment. Thus, a
simulator component will be availa-
ble in the experimentation facility of
FIspace to enact this process and
there will be no connection to the
FMIS outside FIspace hosting facili-
ties (as illustrated in Table 1 – C)

C) FIspace Platform sending in-
formation to Backend Simulator
Component

In the Advice Request scenario, the
FIspace Platform has to send a mes-
sage to the Expert System (external
system as illustrated in Table 1 – C)
requesting a new advice. This pro-
cess is also simulated in the experi-
mentation facilities as depicted in
the figure on the left. The request is
send indeed to the Backend Simula-
tor Component that answers back
to the FIspace Platform as if it was
the Expert System. To enable this
behaviour it is necessary also to
store which answers the Expert
System would answer given a set of
information coming from the
FIspace Platform. This information
should be defined and collected
previously by the trial owners, so
that it can be simulated inside the
experimentation facilities.

FIspace 30.10.2013

FIspace-D300.8 Page 25 of 44

In the situation of supporting real-time data streams during the experimentation, the FIspace test envi-
ronment is directly connected to the external systems generating the stream of data to be consumed in
the experiment. In this case, there is no need for previously storing the data to be used in the experiment.
This data will be generated in real time by the environment of the trial. Table 4 illustrates how it would
look like to use realtime data stream experimentation in the Advice Request scenario.

Table 4: Description of Execution for Advice Request Scenario with Real Stream of Data

Screenshot Description of Situation

A) Receiving Information from
Backend Systems

When the experimentation of the
Advice Request scenario is executed
with real-time data stream, the
FMIS system deployed outside
FIspace hosting environment is ac-
tually connected to the FIspace Plat-
form. This allows the system itself
to send the events with sensor in-
formation, thus removing the role
of the Backend Simulator compo-
nent of the Experimental Environ-
ment.

B) Sending Information to
Backend Systems

The Backend Simulator component
is also not used in the case that the
FIspace Platform needs to send
messages to the Expert System (i.e.,
request the advice). Again, this sys-
tem is actually used and connected
to reach the FIspace Platform.

FIspace 30.10.2013

FIspace-D300.8 Page 26 of 44

5 Execution Environment architecture

This section gives a detailed overview of the Execution Environment architecture as illustrated in Figure
1.

5.1 Main terms

The proposed technical specification of the EE enables the entire process, from test/experiment planning
and configuration, through execution, to analysis of the test execution. We introduce below terms to be
used throughout this report.

Step – A step refers to a single action/task defined in a test scenario.

Test scenario – This is the ordered set of steps that compose a single test.

Variables – In the context of a test, these are field names that stand for specific values during execution.
Variables enable flexibility in test execution, as they enable running the same test with different field val-
ues.

Variables binding – This refers to the replacement of variables values with the test data. This is done by
the experimenter during test execution.

Experiment/test – This is the ordered set of steps to be carried out by an experimenter during execution.
Each experiment is identified by a unique ID and version. An experiment may have variables to enable
multiple executions of the same experiment with different data.

Execution – This is the actual running of an experiment. All variables should be bound to Data Providers
before the execution of steps can begin.

Vusers – These are virtual users that play human users in a specific experiment.

Vusers scripts – These scripts are the ordered set of actions a Vuser performs during the execution of an
experiment. In other words, the set of instructions carried out during execution without user intervention.

Atomic step – This is the smallest (inseparable) single instruction that is carried out during the execution
of a test. An atomic step may contain (a) an instruction to be manually performed by a tester; (b) a refer-
ence to run a Vuser script; or (c) an instruction to inject data provided through a variable into FIspace test.

Execution log – This log is a file that lists actions as occurred during execution, including all process and
system notifications. The entries in an execution log can provide insight into what happened during exe-
cution of the test and provide an audit trail of information related to the execution. In fact, the execution
log is the input to the Reporting module in the EE which analyzes the log and provides performance as-
sessment of the execution.

Expected results –This is the anticipated outcome of a step in a test.

Actual results – These are the real outcome of a step as result of execution.

Key Performance Indicator (KPI) – The KPI is a set of performance measurements related to T&L stored
in the EE, for the sake of performance assessment and analysis. The evaluation framework specification
is in the scope of Work Package 2, but the KPI(s) related to the performance assessment are stored in
the EE, and can be used to assess the performance of the test executed.

Composite Key Performance Indicator (CKPI) – This is a KPI composed of one or more KPIs jointly ana-
lyzed.

Report – The report is a summary of what occurred over one or more test executions. A report may in-
clude performance assessment of the execution based on given KPI(s).

Injected data – Data fed into the test by the backend simulator module in EE is injected data. Injected
data is used whenever real data in real time cannot be obtained during the execution of a test. In these
cases, the intention is to use (realtime) historical data to simulate the processes.

Notifications – These are messages given to a user via FIspace frontend during an execution of a test.
Notifications are recorded in the execution log of the test.

FIspace 30.10.2013

FIspace-D300.8 Page 27 of 44

5.2 Experimentation environment components

In this section, we describe the FIspace EE components:

User Manager: The User Manager handles user accounts, passwords, and access. This includes fea-
tures such as user groups and access control to data, as well as users being able to assign other users
permissions.

Experiment Manager: The Experiment Manager handles experiment lifecycle and experiment querying.
This includes creation, versioning, archiving, and search capabilities.

 Experiment CRUD (Create, Read, Update, and Delete): Provides services for experiment lifecy-
cle, using archiving instead of deletion so that traceability is never lost

 Experiment Search: Provides services for finding experiments according to various search criteria

Execution Manager: The Execution Manager handles the concrete executions of an experiment. This
includes the creation of new executions (including the configuration of variables), executing (or tracking
the execution of) the steps in the experiment, and logging the results.

 Executor: The Executor tracks the execution of the individual steps in an evaluation. This includes
the automated execution of certain steps, such as injecting data/events into the test instance and
running VUser scripts through the Script Execution Engine. This component also creates and up-
dates entries in the execution log, including notifications received from the actual process execu-
tion and error messages.

 Script Execution Engine: This executes VUser scripts to automate user actions.

Resource Manager: The Resource Manager provides an inventory of available resources. Services in-
clude the ability to locate resources according to various search criteria.

Reporting: Reports are generated based on execution logs and KPIs.

 KPI Manager: Manages the calculation and composition of KPIs

 KPI Composer: Used to create and manage composite KPIs

Execution Log Manager: The Execution Log Manager provides logging services for an execution. This
includes the logging of the results for each step of an execution, including any received notifications dur-
ing the execution of each step. Also provides access to these logs.

Execution Data Manager: This is used to manage the access to data that is used during execution.

 Internal Data Provider System: Used for storing and retrieving manually configured data providers

 External Data Access: Used to retrieve data from 3
rd

 party external systems, could be used to
“re lay” e ent fr a real-world shipment, for example

Access to these systems is configured by the tester. Configuration could be UI or file driven.

Backend Simulator: This simulates input data from backend systems to FIspace and provides APIs to
inje t data t the FI a e Te t y te ’ d le . The i lat r re rt ba k n e ent and ther ro-
cessed data.

EE Storage: This provides internal storage services for the experimentation environment.

Data Provider System (app) – This component addresses the binding of the application to the execution
data.

5.3 Data types definitions

The data types are described below. Note that additional methods are included for convenience. While
not mentioned for brevity, getters have associated setter methods as well.

5.3.1 Experiment (DataType)

Note that once an experiment-version has associated executions it cannot be modified, although new
versions can still be created for the experiment.

FIspace 30.10.2013

FIspace-D300.8 Page 28 of 44

Method Notes Parameters

DefineVariable()
void Public

Used to define a new variable which
must be bound for use during execu-
ti n; The ariable’ na e t be
unique within the experiment.

VariableSpecification

AddStep() void
Public

Insert a new step to the experiment Step

int – where to insert

RemoveStep() void
Public

Removes a step from the experiment int – where to remove

ReplaceStep() void
Public

Replaces a step in the experiment Step

int – where is the step to be
replaced

GetSteps()
Step[0..*] Public

Gets the steps for this experiment

GetVariables()
VariableSpecifica-
tion [0..*]

Public

Gets the variables defined for the ex-
periment

GetVersion() int
Public

Gets the version number for the exper-
iment

GetExperimentId()
GUID Public

Gets the experiment ID; this is com-
mon to all the different versions of an
experiment

GetId() GUID

Public

Gets the global unique ID for this ex-
periment and version

GenerateCopy()
Experiment Public

Creates a copy of this experiment; This
is a deep copy—changes to this exper-
iment should not affect the copy and
vice-versa; The copy is not in persis-
tent storage

5.3.2 VariableSpecification (DataType)

A VariableSpecification instance gives a type of data that needs to be provided when creating an Execu-
tion instance for an Experiment.

Method Notes Parameters

GetType()
DataType Public

Returns the data type. May be int,
String, long, HTML, TCP, Event, Con-
tractStatus, Link, etc.

GetCardinality()
DataCardinality
Public

Returns the necessary cardinality.
Cardinalities are characterized by a
minimum value (which is at least 0),

FIspace 30.10.2013

FIspace-D300.8 Page 29 of 44

and a maximum value (which is at
least 1), which may be unbounded.
Examples are: 1..1, 0..1, 2..*, 0..5, 1..*

GetDefault-
DataProvider
DataProvider[0..1]
Public

Returns the default data provider for
binding

GetDescription()
String Public

Gets the human-readable description
of the variable and what it is used for in
the experiment

GetName() String
public

Gets the human-readable name of the
variable.

5.3.3 Step (DataType)

Member Notes Type

 Actor Sets the actor to perform the action;
This can be a user, a role, or a system

String

VUserScript A VUser Script to be used when exe-
cuting

String – the script to be exe-
cuted

DataInjectionVariable Stores a variable name, whose
DataType should be injectable into
FIspace (such as Transport Execution
Data, Event, Booking); When execut-
ing, the bound data provider will pro-
vide the data to be injected; Data is
injected at the beginning of execution

String

Link Sets a link to be resolved during exe-
cution, which the user should click to
access the FIspace UI or application
specific UI; Such links will often con-
tain variables to pass through to the
application which can be used by the
application to update data providers; If
necessary, the application should pro-
vide an appropriate Test UI component
for handling this pass-through data (or
the standard UI could be configured for
“te t de”)

Link

Registrations Registrations for events and notifica-
tions to be made after the execution of
this step; The strings should conform
to FIspace formats; Variables can be
embedded using $varName notation
($$ is used to represent a single $); At
r nti e the ariable ’ al e will be
substituted (similar to how link URIs
are resolved)

String [0..*]

FIspace 30.10.2013

FIspace-D300.8 Page 30 of 44

DataDescription Sets the description of the data to be
used during the step

String

Description Sets the description of the action to be
taken during the step

String

ExpectedResult Sets the expected result of the execu-
tion (a human-readable string)

String

5.3.4 Execution (DataType)

Method Notes Parameters

GetExperiment()
Experiment Public

Returns the experiment instance this
execution is associated with.

BindVariable() void
Public

Binds a variable name with a data
provider

String – variable name

DataProviderId

GetVariableBindings
Map<String,DataProvi
derId> Public

Returns a mapping from variable
names to their bound data providers

GetCursor() int

Public

Returns the index of the next step not
completely executed (from 0 to total
number of steps)

IncrementCursor()
void Public

Increases the cursor by 1

GetId() GUID

Public

Gets the global unique ID for the exe-
cution

GetCreator() UserId

Public

Returns the user id of the creator of
this execution

GetStatus() Execu-
tionStatus Public

Returns the status of the execution,
one of: Initializing, In Progress, Com-
plete, Aborted, Cancelled

5.3.5 Resource (DataType)

Member Notes Type

ID Get the re r e’ ID GUID

Description Gets a human-readable description for
the resource

String

Name Gets the human-readable name for the
resource

String

FIspace 30.10.2013

FIspace-D300.8 Page 31 of 44

5.3.6 Link (DataType)

Member Notes Type

URI Gets the URI; The URI embeds varia-
ble access by using $varName (during
execution $varName will be replaced
with the ariable’ rrent al e (f r
variables with cardinality > 1 this is a
list); $$ is used to encode a single $; If
additional data is not null, then the uri
also embeds an additionalData pa-
rameter containing a URI (which in-
cluded the execution id) for retrieving
the additional data

String

AdditionalData Application specific additional data to
be retrieved; Embeds variable access
by using $varName (which is substitut-
ed n retrie al with the ariable’
current value); $$ is used to encode a
single $; To pass the URI of an ex-
posed data provider use $[varName]
(instead of passing its value); The use
of the additional data field is intended
to prevent the URI member from ex-
ceeding possible size limitations; For
example, this field is used to pass the
URIs for accessing exposed data pro-
viders

String

Description Gets a human-readable description for
the link

String

Name Gets the human-readable name for the
link

String

5.3.7 ExecutionLogEntry (DataType)

Member Notes Type

Actor

Returns the actor (user/ source / sys-
tem) that performed the action

String

Execution Returns the execution that was logged Execution

StepNumber Returns the step number that was
executed for this entry

int

Timestamp Returns a time-stamp (time and date)
of when this entry was created

Timestamp

ActualResult Gets the actual result; for skipped
steps the text will read Skipped

String

FIspace 30.10.2013

FIspace-D300.8 Page 32 of 44

Notifications Returns notifications that were re-
ceived while executing this step; Notifi-
cations conform to formats

Notification[0..*]

DateTypes Returns the data types of data re-
ceived from the back-end simulator
during execution; The indexes here
must match up with those of DataRe-
ceived

DataType[0..*]

DataReceived Returns the data received from the
back-end simulator during execution
that matched registrations; Indexes
must match those for DataTypes; The
data is in the appropriate standard
format (e.g., XML)

String[0..*]

5.3.8 Report (DataType)

Method Notes Parameters

GetName() String
Public

Returns the name of the report

GetExperiments()
Experiment[1..*]
Public

Returns the experiments this report
covers.; This should be gathered from
the Execution instances, there should
be no matching setter

GetExecutions()
Execution[1..*]
Public

Returns the executions over which this
report was created

AddKPICalculator()
void Public

Adds another KPI KPICalculator

RemoveKPICalcula-
tor() void Public

Removes the KPI with the given name String

CalculateKPIValues()
void Public

Calculates KPI value by iterating over
the covered executions and passing
them to the KPICalculators

GetKPIValues()

Map<String, Dou-
ble> Public

Returns a mapping from KPI names to
values calculated over the executions.
There should be no matching setter.

GetDescription()
String
Public

Returns the description of the report

FIspace 30.10.2013

FIspace-D300.8 Page 33 of 44

5.4 Interfaces definitions

5.4.1 Non-component interfaces

5.4.1.1 DataProvider

Instances are retrieved by the Executor from the Execution Data Management subsystem and are used
for variable binding purposes. They can be used to retrieve constants, dynamic values, and data for injec-
tion into Test. There should be implementations for each DataType for retrieving constant data. This al-
lows the execution setup to use constant values. Implementations should also be available for common
storage repositories, such as Relational Data Base Management Systems (RDBMS) systems.

Method Notes Parameters

GetDataType() DataType
Public

Returns the type of data provided.

GetCardinality() Data-
Cardinality Public

Gets the cardinality of the data that
can be provided; For static data the
minimum and maximum should be
equal to the exact number of data enti-
ties available

GetId() GUID

Public

Gets the identifier of the provider; The
identifier should be unique within the
providing system

GetSystemId() GUID

Public

Returns the unique identifier for the
providing system

GetDataIterator() Iterator
Public

Returns an Iterator that gives access
to the data; The iterator is only re-
quired to support moving forward
through the data; It may optionally
provide ability to jump to an index,
move backwards, or return the amount
of data

GetName() String Public Returns the human-readable name of
a data provider; May return null (a data
provider is not required to have a
name)

IsExposedToApplications
boolean Public

Returns whether or not the data is
accessible for retrieval from FIspace
applications; If true, then the Ex-
posedDataProvider interface must be
implemented

FIspace 30.10.2013

FIspace-D300.8 Page 34 of 44

5.4.1.2 ExposedDataProvider

The following are methods for accessing (and potentially storing) data from FIspace applications, this
interface extends DataProvider interface. These data providers are then accessible through a restful inter-
face, which uses their DataProviderIds (pairs of GUIDs to identify the data access system and provider).

Method Notes Parameters

HasMore() boolean
Public

Returns whether there is more data
(i.e., calling getValue(Index) is valid)

int - index

GetValue() Object

Public

Gets the value at Index; The value will
be serialized to a string representation
a rding t thi in tan e’ data ty e
when the result is returned to the call-
ing application; This operation must
enable random access (although opti-
mizations may be possible for forward
only access)

int - index

SetValue() void
Public

Sets the value at Index to the given
parameter; The value received will
have been deserialized from a string
representation into an object according
t thi in tan e’ data ty e; Thi i an
optional operation, and should only be
 ed if the a li ati n d e n’t anage
its own state for a variable

int – index

object – value to be set

GetSize() int Public Returns the amount of data available
in the provider, if known; If unknown,
returns -1

5.4.1.3 DynamicallyBoundDataProvider

DynamicallyBoundDataProvider provides a binding point for variables to factory-created data providers
during execution. This interface extends the DataProvider interface, although all DataProvider methods
will fail until the binding takes place. The creation of the underlying data provider takes place the first time
that a variable that is bound to the instance is accessed (i.e., lazy-loading on read or write). These pro-
viders will usually be managed in the internal data provider system, although the factories they access will
most often be in External Data Access as they may need to access the application. These data providers
will often be exposed as well. Note that if this data provider is exposed and supports setting values, then
the underlying data provider must also support setting values.

Method Notes Parameters

SetFactory() void
Public

Sets the factory that will be used to
create the data provider instance to
which calls will be delegated

DataProviderFactoryId

SetFactoryArgs()
void Public

Sets the arguments to be passed to
the factory create method; If an Object
is a VariableReference, then the itera-
tor for that variable as given by its
bound data provider will be the argu-
ment

Obje t[0…*]

FIspace 30.10.2013

FIspace-D300.8 Page 35 of 44

5.4.1.4 DataProviderFactory

Instances are used to dynamically create data providers. They should be used when dealing with dynam-
ic variables that arise as part of application controlled lifecycles. These factories will most often create
data providers that access or store application state.

Method Notes Parameters

GetDataType()
DataType Public

Returns the type of data provided

GetCardinality()
DataCardinality
Public

Gets the cardinality of the data that
can be provided; For static data the
minimum and maximum should be
equal to the exact number of data enti-
ties available

GetId() GUID

Public

Gets the identifier of the factory; The
identifier should be unique within the
providing system

GetSystemId()
GUID

Public

Returns the unique identifier for the
providing system

CreateDataProvid-
er() DataProvider
Public

Creates a new data provider instance,
based on the received parameters;
The method should be capable of re-
solving both Iterators and value objects

Object[0..*] – parameters for
creating the data provider

GetName() String
Public

Returns the human-readable name of
a data provider factory; May return null
(a factory is not required to have a
name)

5.4.1.5 KPICalculator

KPICalculator is used to calculate a KPI. Instances are created in the KPI Manager component and are
used by the Reporting component.

Method Notes Parameters

Initialize() void Pub-
lic

Initialize the calculation

Update() void Pub-
lic

Updates the internal state with infor-
mation related to the given execution;
This would involve calculating over
notifications in the relevant logs

Execution

CompleteCalcula-
tions() void Public

Performs any final calculations neces-
sary

GetValue() double
Public

Returns the calculated KPI value

FIspace 30.10.2013

FIspace-D300.8 Page 36 of 44

GetName() String
Public

Returns the name of the KPI

Additional KPIs can be composed from provided KPI functions and the base set of KPIs. Functions pro-
vided would include Sum, Average, Difference, Standard Deviation, Minimum, and Maximum. Each func-
tion would receive additional KPIs as inputs.

KPICalculator instances are created through a KPICalculatorFactory.

5.4.1.6 KPICalculatorFactory

KPICalculatorFactory is a named factory of KPICalculator instances. Base KPIs will have preinstalled
KPICalculatorFactory implementations. The KPI Composer creates new instances by composing KPIs.
Used by KPIManager to create new KPICalculator instances for the ReportManager.

Method Notes Parameters

GetName() String
Public

The name of the calculation performed

Create() KPICalcu-
lator Public

Creates a new KPICalculator instance

ToStringRepresen-
tation() String Pub-
lic

Returns the string representation; this
representation can be used as input to
the KPIComposer

5.4.2 Component interfaces

5.4.2.1 Executor

Method Notes Parameters

ExecuteStep() void
Public

Executes the current step, and logs
output; Note that for manual steps, this
does not do anything

For steps with data injectors, it will
access the DataProvider instance
(through the bound injection variable),
retrieve each data object one at a time,
injecting each through the Backend
Simulator into the Test system, before
proceeding to the next

If the given execution is not properly
initialized (e.g., it has unbound varia-
bles), an ExecutionNotReadyException
will be thrown; If errors occur during
automated steps, the execution is
aborted

Execution

LogResult() void
Public

Writes a new entry to the log for the
current step

Execution

String – the text to be logged

FIspace 30.10.2013

FIspace-D300.8 Page 37 of 44

CompleteStep()
void Public

Completes the current step and pro-
gresses to the next

Execution

SkipStep() void
Public

Skips the current step, logs a skip
entry to the log

Execution

CancelExecution()
void Public

Stops and cancels the given execution.
If there is a script running for this Exe-
cution, then it will kill it.

Execution

5.4.2.2 ScriptExecutionEngine

Method Notes Parameters

ExecuteScript()
ScriptExecutionId
Public

Executes the given script; The script-
ing language will be dependent on the
engine selected in the implementation
phase; The engine should support
data-binding to variables; Returns an
identifier for the script execution

String – the VUser script

Map<Name, DataProvider> -
the variable bindings

WaitForComple-
tion() boolean Pub-
lic

Waits for the script execution to com-
plete up to a given timeout; Returns
true if the execution has completed,
else false

ScriptExecutionId

int – timeout in seconds

KillScript() void
Public

Will attempt the orderly stopping of the
script; If not completed by the given
ti e t will f r ibly t the ri t’
execution

ScriptExecutionId

int – timeout in seconds

5.4.2.3 DataProviderSystem

Method Notes Parameters

GetProviders() DataPro-
vider[0..*] Public

Returns the data providers that are
available in this system

GetProviders()

DataProvider[0..*]

Public

Gets the providers matching the
desired DataType and DataCardi-
nality

DataType

DataCardinality

GetProvider() DataPro-
vider Public

Gets a data provider by ID GUID

GetFactories()

DataProviderFactory[0..*]
Public

Returns the data provider factories
that are available in this system

GetFactories()

DataProviderFactory[0..*]

Gets the data provider factories
matching the desired DataType and
DataCardinality

DataType

DataCardinality

FIspace 30.10.2013

FIspace-D300.8 Page 38 of 44

Public

GetFactory() DataPro-
viderFactory Public

Gets a data provider factory by ID GUID

5.4.2.4 ExternalDataAccess

As part of system setup, a configuration stage is necessary in which DataProviderSystem instances
would be configured. An implementation could for example be configured to connect to an RDBMS and
retrieve data from specific tables.

Method Notes Parameters

AddSystem() void
Public

Adds a data provider system DataProviderSystem

GetSystem()
DataProviderSys-
tem Public

Gets a data provider system by ID GUID

GetSystems() [0..*]
Public

Returns the data provider systems

GetArchivedSys-
tems() [0..*] Public

Returns the archived data provider
systems

ArchiveSystem()
void Public

Archives the data provider system GUID

UnarchiveSystem()
void Public

Unarchives the data provider system GUID

GetProvider()
DataProvider Pub-
lic

Equivalent to GetSys-
Sys-
tem(sytemId).GetProvider(providerId)

DataProviderId – this is a
pair of GUIDs, one for sys-
temId and one for providerId

GetFactory()
DataProviderFactory
Public

Equivalent to Get-
System(sytemId).GetFactory(factoryId)

DataProviderFactoryId – this
is a pair of GUIDs, one for
systemId and one for facto-
ryId

5.4.2.5 InternalDataProviderSystem

This is also a DataProviderSystem but has functionality for static data configuration.

Method Notes Parameters

CreateProvider()
DataProvider Pub-
lic

Creates a new data provider that pro-
vides the given data

DataType – the type of data
provided by the new
DataProvider

Object [0..n] – the data enti-
ties to be returned by the
new DataProvider

FIspace 30.10.2013

FIspace-D300.8 Page 39 of 44

ArchiveProvider()
void Public

Archives the data provider GUID

UnarchiveProvider()
void Public

Un-archives the data provider GUID

GetAr-
chivedProviders()

DataProvider[0..n]
Public

Gets the archived data providers

5.4.2.6 BackEndSimulatorService

Method Notes Parameters

InjectData() void
Public

Injects data to the appropriate module DataType – the type of data;
The modules that need this
data should be uniquely deter-
minable from this

String[1..*] – a serialized repre-
sentation of each data entity in
an appropriate format for con-
sumption by the modules (e.g.,
XML)

5.4.2.7 ExecutionManagerService

Method Notes Parameters

GetActiveExecu-
tions() Execu-
tion[0..*] Public

Returns the active (incomplete) execu-
tions for the given user ID

UserId

GetExecutions()

Execution[0..*]
Public

Returns the executions for a given
experiment

Experiment

StartNewExecu-
tion()

Execution Public

Creates a new execution for a given
experiment; The new execution has no
variables bound

Experiment

CopyExecution()
Execution Public

Creates a new execution from a given
execution; The new execution will not
have any records in the ExecutionLog.
Variables are bound

Execution

FIspace 30.10.2013

FIspace-D300.8 Page 40 of 44

5.4.2.8 ExperimentCRUDService

Method Notes Parameters

CreateExperiment()
void Public

Creates a new experiment in persis-
tent storage

Experiment

UpdateExperiment()

void Public

Updates an experiment in persistent
storage

Experiment

ReadExperiment()
Experiment Public

Gets an experiment by ID GUID – the ID corresponding
to an instance (experiment
ID together with version ID)

ArchiveExperi-
ment() void Public

Archives the experiment Experiment

UnarchiveExperi-
ment() void Public

Un-archives the experiment Experiment

5.4.2.9 ExperimentSearchService

Method Notes Parameters

FindExperiments()
Experiment[0..*]
Public

Finds experiments according to a que-
ry. The following information should be
searchable in the query language:

 Description

 Creator

 Full text (including steps and
variables)

 Variable Descriptions

 Archived Status

Only Experiments the user has access
to will be returned

String

5.4.2.10 ResourceManager

Method Notes Parameters

CreateResource()
void Public

Creates a new resource in persistent
storage

Resource

GetResources()

Resource[0..*] Pub-
lic

Returns the resources available

UpdateResource() Updates a resource in persistent stor- Resource

FIspace 30.10.2013

FIspace-D300.8 Page 41 of 44

void Public age

ArchiveResource()
void Public

Archives the resource Resource

Unarchiv-
eResource() void
Public

Unarchives the resource resource

FindResources()
Resource[0..*] Pub-
lic

Returns resources whose name and/or
description match the query string
given; Results are returned such that
better matching results appear first

String

5.4.2.11 ExecutionLogManager

Method Notes Parameters

LogEntry() void
Public

Creates a new entry in the log. ExecutionLogEntry

GetEntries()

ExecutionLogEntry
[0..*] Public

Returns the entries for an execution Execution

5.4.2.12 KPIComposer

Method Notes Parameters

CreateCom-
positeKPI() KPICal-
culatorFactory Pub-
lic

Creates a KPICalculatorFactory based
on functions and base KPIs, given a
string representation

String – KPI name

String – KPI composition
string

5.4.2.13 KPIManager

Method Notes Parameters

GetBaseK-
PINames()
String[0..*] Public

Returns the base KPI names available
in the system

GetKPINames()

String[0..*] Public

Returns the names of all KPIs

RegisterNewKPI()
void Public

Uses the KPIComposer to create a
new KPICalculatorFactory and register
it with the given (unique) KPI name

String – KPI name

String – KPI composition
string

FIspace 30.10.2013

FIspace-D300.8 Page 42 of 44

ArchiveKPI() void
Public

Archives a composite KPI String – name

UnarchiveKPI()
void Public

Un-archives a composite KPI String – name

NewKPICalculator()
KPICalculator Public

Creates a new KPICalculator instance
for the given name

String

5.4.2.14 ReportManager

Method Notes Parameters

CreateReport() void
Public

Stores a new report Report

GetReports() Re-
port[0..*] Public

Retrieves reports covering the given
experiment

Experiment

GetReports()

Report[0..*] Public

Retrieves reports covering the given
execution

Execution

FindReports() Re-
port[0..*] public

Searches by name, description and
note to find reports. Results should be
returned with better match results first.

String – query

5.4.2.15 UserManager

The User Manager will expose the standard user and authorization management methods for controlling
access to Experiments, DataProviderSystems, Executions, and Reports. By default, access to the indi-
vidual experiment is used to control who can access the resulting executions and related reports. Option-
ally, these may be overridden to provide more fine-grained control.

FIspace 30.10.2013

FIspace-D300.8 Page 43 of 44

6 Summary

This document describes the architecture, development and scenario execution plan of FIspace EE. This
report is the direct continuation of the work done by the WP4 of FInest project. The EE architecture sec-
tion provides the detailed description of the EE main components, data types and interfaces. The EE
development section describes the development processes that is planned to be performed during the
FIspace project which is at this point is fully aligned with the work plan described in the DoW. Finally, the
scenario execution section provides the template for execution plan and demonstrates the entire process
on the example of the Advice request scenario taken from the Greenhouse Management and Control
Trial 422.

